Can language models automate data wrangling?

Gonzalo Jaimovitch-Lépez!, César Ferri', José Herndndez-Orallo!,
Fernando Martinez-Plumed" 2, and Marfa José Ramirez-Quintanal

'WRAIN. Universitat Politécnica de Valéncia, Spain
2European Commission, Joint Research Centre
{gonjailo,cferri, jorallo,fmartinez,mramirez}@dsic.upv.es

Abstract. The automation of data science and other data manipulation pro-
cesses depend on the integration and formatting of ‘messy’ data. Data wran-
gling is an umbrella term for these tedious and time-consuming tasks. Tasks
such as transforming dates, units or names expressed in different formats have
been challenging for machine learning because (1) users expect to solve them
with short cues or few examples, and (2) the problems depend heavily on
domain knowledge. Interestingly, large language models today (1) infer from
very few examples or even a short clue in natural language, and (2) integrate
vast amounts of domain knowledge. It is then an important research ques-
tion to analyse whether language models are a promising approach for data
wrangling, especially as their capabilities continue growing. In this paper we
apply different language model variants of GPT to data wrangling problems,
comparing their results to specialised data wrangling tools, also analysing the
trends, variations and further possibilities and risks of language models in this
task. Our major finding is that they appear as a powerful tool for a wide range
of data wrangling tasks, but reliability may be an important issue to overcome.

Keywords: Data Science Automation - Data Wrangling - Language Models.

1 Introduction

Data wrangling refers to repetitive and time-consuming data preparation tasks, in-
cluding transforming data presented in different formats into a standardised form for
easy access, understanding and analysis. The (semi-)automation of these manual and
non-systematic tasks can impact the costs of data preparation significantly. If lan-
guage models (on their own or integrated within other systems) are able to solve a
significant proportion of these problems in the next years, the transformative effect on
society and the marketplace would be huge, given how widespread these formatting
chores happen (from spreadsheet manipulation to data science projects) [12].

One key difficulty of some data wrangling problems such as standardising a field
into a single format stems in the context of interaction [30]. For automation to be
really useful, the tool should be able to infer the transformation pattern from very
few examples, and complete the rest automatically. The second challenge for data
wrangling, and especially for data transformation into a common format lies in the
myriad of different transformations and formats we may find depending on the domain
of the data. For instance, in a date field, the day can be the first, second or third
number, and these numbers can be delimited by different symbols. An Al system based
only on basic string transformations may never find the right solution given just one

2 Jaimovitch-Lépez et al.

example without domain constraints or background knowledge, as the transformations
needed for dates are very different from those used for addresses or emails.

There seems to be great potential in language models [2] for data wrangling pre-
cisely because they compress huge amounts of human knowledge about many different
domains, and have recently shown reasonably good performance in contextualising
this knowledge for few-shot inference [23, 25,5, 13]. It is then very important to deter-
mine whether language models could be used in the future for data wrangling tasks,
and whether they get better as the number of parameters increase, a question subject
to recent debate [1,29]. The applicability for language models for the automation of
other parts of data science may also be affected by the progress in data wrangling,
especially as we move towards more domain-dependent and more open-ended tasks,
as shown in the quadrants of figure 1 in [9)].

In this paper we test experimentally whether language models can be used to solve
typical problems in data wrangling, using prompts that will have input-output exam-
ples and a single input ending the prompt, for which the language model will have to
provide the output as a continuation of the prompt (e.g. Input: ‘marshap@gmail.com’
\nOutput: ‘marshap’\n\nInput: ‘alant@hotmail.com’\nOutput:). Concretely, we
compare the inference power of GPT-3 with other specialised tools on a benchmark
of simple data wrangling problems. To our knowledge, this is the first paper analysing
the potential of language models for data wrangling systematically, looking for the
influence of the size of the model, and the number of examples.

2 Related work

One of the challenges for the automation of data wrangling tasks is how the solutions
can be built or selected from a vast space of transformations when only a few examples
are provided by a user [4]. For this reason many data wrangling tasks are approached
by combining the available information in the examples with some domain knowledge
(“any information the learner has about the unknown transformation before seeing the
examples” [27]), in an attempt to reduce the hypothesis space. Inductive Programming
[15] has been a common paradigm to learn transformations from very few examples
by incorporating prior knowledge about the domain in a declarative way. As this
approach suffers from intractability when background knowledge becomes large, the
use of ad-hoc domain-specific languages (DSLs) (see [8, 32]) restrict the search space,
and has led to the first commercial products such as Microsoft Excel with FlashFill
[15]. Even with domain-specific languages, many constraints on the transformations
are added to make things work, or very specific collections of built-in facilities or
functions. For instance, Amazon SageMaker Data Wrangler* contains over 300 built-in
data transformations or even tools like Trifacta Wrangler [20] allows the user to define
her own transformations. Many systems combine some of these ideas or apply ad-hoc
optimisations [16,3,11,22,14,28,27]. On the other hand, in [7,6], general-purpose
inductive programming systems can still be used by using different domain-specific
background knowledge that are selected or ranked from contextual information or
meta-features about the examples to be transformed.

Language models are conceptually simple systems: they estimate the probability
p(ylx) of a given sequence of characters or tokens y following another sequence z,

*https://aws.amazon.com/es/sagemaker /data-wrangler/

Can language models automate data wrangling? 3

in the spirit of efficient coding [26]. Today, these models are usually based on large
deep learning architectures such as transformers (attention-based architectures, [31]),
but they still estimate this same probability. They are trained over massive natural
language corpora and hence exploit the extrinsic patterns borrowed from humans.
However, beyond making plausible continuations following the inputs (the so-called
‘prompts’), or as part of this capability, recent systems such as BERT [10], GPT-
2 [24], GPT-3 [5], and PanGu-« [34] can also be employed as ‘few-shot learners’,
trying to exploit intrinsic patterns in the prompt. Few-shot inference happens when
the models are able to extrapolate from previous examples in the ‘prompt’, without
being retrained or fine-tuned. Extensive experimental research is showing remarkable
extrapolations [18,17,33,19] from small prompts. The state of the art of language
models suggest they can be a promising tool for data wrangling precisely because
they (1) capture a wide range of domain background knowledge, and contextualise
it to the problem quite effectively, without the need of extra knowledge (e.g., we
do not have to tell them that ‘23/12/2021’ is a date), and (2) they not only infer
from very few examples (e.g., pairs of date transformations “Input: 23/12/2021,
Output: 12-23-2021"), but we can also add hints to the prompt to make few-shot
learning more effective, or even zero-shot learning possible (e.g., “The conversion
of 23/12/2021 into US format is:”).

3 Methodology: goals and experimental design

Our experimental goals are: (1) determine to which extent a state-of-the-art language
model can obtain good results on these data wrangling problems under the few-shot
setting, (2) analyse the effect of the number of instances given in the few-shot setting,
(3) explore the effect of the number of parameters of the language model to better
understand the future potential, (4) study the variation of performance for different
domains, and (5) compare the results with some other systems specifically designed
for data wrangling.

For the experimental setting, we employ the Data Wrangling Dataset Repository',
a benchmark for data transformation problems. This repository includes many of the
data wrangling tasks used in the literature (see, e.g., [11]) as well as new manually
gathered tasks [7]. Overall, the repository contains 117 different tasks divided into 7
different domains (dates, emails, freetext, names, phones, times and units). For every
task we find 6 examples composed by an input string and an output string. The
output string corresponds to a corrected or modified version of the input string. In
the appendix, we provide further details about the tasks in each domain in Table 2
and some illustrative examples in Table 3.

We use four versions of GPT-3 (a language model built and trained by OpenAl) of
increasing capabilities: Ada, Babbage, Curie and DaVinci which line up closely with
350M, 1.3B, 6.7B, and 175B parameters, respectivelyt. First, we analysed several
possible prompts based on the recommendations stated in the OpenAI APIS. As a
result, the final prompt used in this work follows an input-output style, where the

Thttp://dmip.webs.upv.es/datawrangling/

fFor the sake of replicability and reproducibility, all the code and results can be found
in https://github.com/gonzalojaimovitch/lm-dw

$https://openai.com/blog/openai-api/

4 Jaimovitch-Lépez et al.

string “Input:” is used to indicate the start of the input, and the string “Output:” is
used to indicate the start of the output. The line break \n separates the input from the
output of an example, as well as the examples in the prompt. The instance will have
one (one-shot) or more (few-shot) input-output pairs, randomly selected (without
considering the possible order sensitivity of GPT-3 [21]), of the same problem and
domain, and one single input ending the prompt. The model language will have to
provide the output by continuing the prompt. These are two one-shot examples (from
different domains):

Input: ¢290386°\nOutput: ‘29-03-86’\n\nInput: ‘250374’\nlutput:
Input: ‘08:50-09:30’\n0Output: ‘09:30’\n\nInput: ‘09:50-08:30’\nlutput:

4 Results and Discussion

The results obtained by the four different models (Ada, Babbage, Curie and DaVinci)
in the four learning settings analysed (from 1-shot to 4-shot) are depicted in Figure
1 (complete details in Table 4, Figure 4, Table 5 and Table 6 in the supplementary
material). In general, the results show that language models can be employed to learn
simple transformations from few examples, and, as expected, the accuracy improves
when we provide more instances. We also see that, in general, the most powerful
engine is DaVinci.

Nevertheless, the performance is not uniform across the analysed domains. We
observe that the domain emails is the one where the GPT-3 models obtain the highest
performance, whereas units is the domain with the lowest performance.

With the intention of getting more insight into how the models fail, we perform a
fine-grain analysis of the ‘units’ domain. Table 1 includes examples of some of these
tasks to better understand the differences in performance showed in Figure 2. The
problems in tasks getUnits-i and getValue-i (see Table 2 for details) can be translated
as “extracting a part of the string”, a transformation that the GPT3 models can
solve. Hence, we see that GPT-3 presents good results in domains where tasks can be
solved by simple string transformations. However, getSystem-i and convert-i are much
more complex tasks. Thus, getUnits-i requires the identification of the unit acronym
(e.g., ‘cl’ for centilitres) and relating it with its unit system (e.g., volume), while
convert-i needs to perform an arithmetic operation (e.g., a division), in addition to
the identification of the conversion coefficient to the target unit (e.g., a coefficient of
1000 to convert milligrams into grams).

Table 1. Examples of problems in the domain ‘units’.

Problem Input — Output
‘getUnits-1’ 56.77cl — cl
‘getValue-1’ 56.77cl — 56.77

‘getSystem-1’ 56.77cl — Volume
‘convert-1’ 1441.8mg; g — 1.4418001

Finally, in order to compare the performance of GPT-3 with other data wrangling
systems, we employ the subset of 26 problems for which there are results in the liter-
ature and a 1-shot setting, which is the same setting used by the other systems. We
compare GPT-3 DaVinci and other data wrangling tools: FlashFill [15], TrifactaWran-
gler [22] and DBK [7]. The results (displayed in Figure 3) show that general-purpose

Can language models automate data wrangling? 5

1-shot 2-shot

0.75
oso o] . o

e NN B e . =
025 I
0.00
(8]
Q
<
0.75
0.50
0.25
0.00

dates emails freetext names phones times units dates emails freetext names phones times units

Domain

GPT-3version Ada | Babbage | Curie [l Davinci

Fig. 1. Average results for the seven domains and the four versions of GPT-3. Each plot
represents how many examples are given (from 1-shot to 4-shot). The dashed horizontal
lines show the average results per system. Disaggregated results for all tasks shown in Table
4 and Figure 4 in the supplementary material.

language models are competitive with first-generation data wrangling tools such as
FlashFill, and are getting closer in performance to more sophisticated tools such as
DBK. Again, we see that the performance of the compared systems is related to the
types involved in the target functions. The best results are obtained in domains where
the problems are solved by simple string operations, while in other domains like units
where some functions incorporate arithmetic the results are much worse. The excep-
tion is DBK that can induce the domain of the problem and then select proper base
functions to address it.

5 Conclusions

Language models have recently disrupted artificial intelligence thanks to an unex-
pected abstraction capacity that has expanded their applicability to fields and prob-
lems not originally anticipated in their design. In this work, we have analysed different
configurations and prompts, as well as the effect of the number of examples provided
to see their performance for data wrangling problems. To our knowledge, this paper is
the first one that explores the possibilities of language models for data wrangling prob-
lems. The results show the capacity of these systems to learn transformation functions
from few examples. The performance of the studied language models is comparable

6 Jaimovitch-Lépez et al.

Ada Babbage Curie DaVinci
convert-3 (0) # * - *
convert-1(0) # * - *
convert-4 (0.04) # * - ——
convert-2 (0.09) # * - “
getSystem-1 (0.18) # * e e <
getSystem-2 (0.2) # * -—+ ——+ i
getvalue-1 (0.55) U, —— —— L
getvalue-2 (0.65) T T . EEE—
—
getlnits-1 (0.77) EEEEmmmm——— S T EE—
getlnits—2 (0.74) EEEEmmm————, IETEEEEEEEE

0 025 05 0.75 10 025 05 075 10 0.25
Accuracy

o
o

0.75

[
o
=]
)
a
o
o
o
3
a
[

GPT-3version 1-shot 2-shot [M] 3-shot [l 4-shot

Fig. 2. Average accuracies for the tasks in the wunits domain for all GPT-3 systems and
learning settings. Complete details for all domains and descriptions for all tasks in Figure 4
and Table 2, respectively, in the supplementary material.

100
0.75

§os0

dates emails names phones times units
Domain

0.25

0.00

system . DBK | FlashFill [l GPT-3 (DaVinci) [l Trifacta Wrangler

Fig. 3. Average results by GPT-3 (DaVinci version) compared to FlashFill [15], Trifacta
Wrangler and DBK [7] for a 1-shot learning setting. Results of the compared systems are
obtained from [7, 6]. The tasks addressed are a subset of those in Table 4. Coloured, horizontal
lines show the average results per system across domains.

to well-known systems specialised in data wrangling. These results open a promising
research direction to explore the possible applications of language models as APIs and
specialised tools for data wrangling. This is not limited to data wrangling, but could
well be used for other tasks in data science, especially those that can be learnt from
very few examples and require extensive domain knowledge.

As future work, we are interested in exploring other scenarios where, additionally
to the examples, we also give some textual hints about the problem. This is rec-
ommended in the OpenAIl API documentation. We also plan to explore alternative
prompts that could increase the learning capacity of language models. Finally, we also
have detected some problems related to the reliability of the learned hypotheses by
the language models. For instance, consistent hypotheses learned with few examples
are later ignored when we provide more examples to the models.

Mª José Ramírez뺭

Can language models automate data wrangling? 7

Acknowledgements We thank Lidia Contreras for her help with the Data Wran-
gling Dataset Repository. We thank the anonymous reviewers for their comments.
This work was funded by the Future of Life Institute, FLI, under grant RFP2-152,
the MIT-Spain - INDITEX Sustainability Seed Fund under project COST-OMIZE,
the EU (FEDER) and Spanish MINECO under RT12018-094403-B-C32, Generali-
tat Valenciana under PROMETEQO/2019/098 and INNEST/2021/317, EU’s Horizon
2020 research and innovation programme under grant agreement No. 952215 (TAI-
LOR) and US DARPA HR00112120007 ReCOG-AI FMP acknowledges funding from
the HUMAINT project by DG JRC of the European Commission.

References

10.

11.

12.

13.

14.

15.

. Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochas-

tic parrots: Can language models be too big? In: Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency. p. 610-623. FAccT ’21 (2021)
Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model.
The journal of machine learning research 3, 1137-1155 (2003)

Bhupatiraju, S., Singh, R., Mohamed, A.r., Kohli, P.: Deep api programmer: Learning
to program with apis. arXiv preprint arXiv:1704.04327 (2017)

Bogatu, A., Paton, N.W., Fernandes, A.A.: Towards automatic data format transforma-
tions: Data wrangling at scale. In: British International Conference on Databases. pp.
36-48. Springer (2017)

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. arXiv
preprint arXiv:2005.14165 (2020)

Contreras-Ochando, L., Ferri, C., Herndndez-Orallo, J.: Automating common data sci-
ence matrix transformations. In: ECMLPKDD workshop on Automating Data Science.
ECML-PKDD 19 (2019)

Contreras-Ochando, L., Ferri, C., Herndndez-Orallo, J., Martinez-Plumed, F., Ramirez-
Quintana, M.J., Katayama, S.: Automated data transformation with inductive program-
ming and dynamic background knowledge. In: Proceedings of the European Confer-
ence on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019.
ECML-PKDD ’19 (2019)

Cropper, A., Tamaddoni, A., Muggleton, S.H.: Meta-interpretive learning of data trans-
formation programs. In: Inductive Logic Programming. pp. 46-59 (2015)

De Bie, T., De Raedt, L., Hernandez-Orallo, J., Hoos, H.H., Smyth, P., Williams, C.K.:
Automating data science: Prospects and challenges. Communications of the ACM, to
appear, arXiv preprint arXiv:2105.05699 (2021)

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

Ellis, K., Gulwani, S.: Learning to learn programs from examples: Going beyond program
structure. In: IJCAL pp. 1638-1645 (2017)

Furche, T., Gottlob, G., Libkin, L., Orsi, G., Paton, N.W.: Data wrangling for big data:
Challenges and opportunities. In: EDBT. vol. 16, pp. 473-478 (2016)

Gao, T, Fisch, A., Chen, D.: Making pre-trained language models better few-shot learn-
ers. arXiv preprint arXiv:2012.15723 (2020)

Gulwani, S.: Automating string processing in spreadsheets using input-output examples.
In: Procs. 38th Principles of Programming Languages. pp. 317-330 (2011)

Gulwani, S., Herndndez-Orallo, J., Kitzelmann, E., Muggleton, S.H., Schmid, U., Zorn,
B.: Inductive programming meets the real world. Communications of the ACM 58(11),
90-99 (2015)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Jaimovitch-Lépez et al.

Ham, K.: Openrefine (version 2.5). http://openrefine. org. free, open-source tool for
cleaning and transforming data. Journal of the Medical Library Association: JMLA
101(3), 233 (2013)

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., Steinhardt, J.:
Measuring massive multitask language understanding. ICLR (2021)

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D.,
Steinhardt, J.: Measuring mathematical problem solving with the MATH dataset. CoRR
abs/2103.03874 (2021), https://arxiv.org/abs/2103.03874

Izacard, G., Grave, E.: Leveraging passage retrieval with generative models for open
domain question answering. arXiv preprint arXiv:2007.01282 (2020)

Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: Interactive visual specifi-
cation of data transformation scripts. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. pp. 3363-3372. ACM (2011)

Lu, Y., Bartolo, M., Moore, A., Riedel, S., Stenetorp, P.: Fantastically ordered prompts
and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786 (2021)

Petrova-Antonova, D., Tancheva, R.: Data cleaning: A case study with openrefine and
trifacta wrangler. In: International Conference on the Quality of Information and Com-
munications Technology. pp. 32—40. Springer (2020)

Puri, R., Catanzaro, B.: Zero-shot text classification with generative language models.
arXiv preprint arXiv:1912.10165 (2019)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models
are unsupervised multitask learners. OpenAl blog 1(8), 9 (2019)

Schick, T., Schiitze, H.: Exploiting cloze questions for few-shot text classification and
natural language inference. arXiv preprint arXiv:2001.07676 (2020)

Shannon, C.E.: Communication theory of secrecy systems. The Bell system technical
journal 28(4), 656715 (1949)

Singh, R., Gulwani, S.: Predicting a correct program in programming by example. In:
International Conference on Computer Aided Verification. pp. 398-414. Springer (2015)
Singh, R., Gulwani, S.: Transforming spreadsheet data types using examples. In: Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 343-356 (2016)

Tamkin, A., Brundage, M., Clark, J., Ganguli, D.: Understanding the capabilities, limi-
tations, and societal impact of large language models. arXiv preprint arXiv:2102.02503
(2021)

Terrizzano, 1.G., Schwarz, P.M., Roth, M., Colino, J.E.: Data wrangling: The challenging
yourney from the wild to the lake. In: CIDR (2015)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.,
Polosukhin, I.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

Wu, B., Szekely, P., Knoblock, C.A.: Learning data transformation rules through exam-
ples: Preliminary results. In: Information Integration on the Web. p. 8 (2012)

Xu, S., Semnani, S.J., Campagna, G., Lam, M.S.: AutoQA: From databases to QA
semantic parsers with only synthetic training data. EMNLP (2020)

Zeng, W., Ren, X., Su, T., Wang, H., Liao, Y., Wang, Z., Jiang, X., Yang, Z., Wang,
K., Zhang, X., et al.: Pangu-a: Large-scale autoregressive pretrained chinese language
models with auto-parallel computation. arXiv preprint arXiv:2104.12369 (2021)

Can language models automate data wrangling? 9

Supplementary Material

Table 2. Datasets included in the data wrangling repository.

Task Description

Expected Output

Add punctuation
Change format
Change Punctuation
Get Day

Get Day Ordinal
Get Month Name
Get Week Day
Reduce Month Name
Set Format

The date in numeric format split by a punctuation sign
The date in one particular format

The date in one particular format

The day in numeric format

The day in numeric ordinal format

The name of the month

The name of the weekday

The name of the month reduced to three letters

The date split in DMY format

Generate Email
Get After At
Get Domain
Before At

An email account created with the name and the domain
Everything after the at symbol

The domain before the dot

Everything before the at symbol

After Symbol
Between Symbols
Delete Punctuation
Delete Spaces
Digit to End

First Character
Get After Comma

Everything after a symbol

Everything between a pair of symbols
Remove punctuation

Remove blanks

Everything after the first digit if exists
Get first character

Everything after a comma

Get Caps Capitalise each word in a text

To Upper Convert text to upper case

Add Title The name with a title

Get Title The title attached to the name, if exists

Generate Login
Reduce name

A login generated using the name
The name reduced before the surname(s)

Add Prefix by Country Phone numbers with the prefix of the countries

Delete Parentheses

The list of phone numbers without parentheses

Get Number A phone number presented in the string, if exists
Set Prefix The list of phone numbers with the prefix

Set Punctuation A phone number split by a punctuation sign
Add Time The time increasing the hour by the integer

Append o’clock Time
Append Time
Convert Time
Convert Time
Convert Time
Convert Time

Delete Time

Get Hour

Get Minutes

Get Time

The time appending an o’clock time

The time appending the integer as new component

The time formatted to 24 hours format

The time formatted to a given format

The time formatted to 12 hours format

The time changed from the first time zone to the second
The time deleting the last component

The hour component

The minutes component

A time presented in the string

Convert Units
Get System
Get Units
Get Value

The value transformed to a different magnitude
The system represented by the magnitude

The units of the system

The numeric value without any magnitude

Table 3. Examples of data wrangling tasks of different domains included in the repository
used for the experimentation.

Domain Tasks Example (input — output)

Dates 21 74-03-81 — 31

Email 10 Jan.Kotas@litwareinc.com — litwareinc.com

Freetext 25 Association of Computational Linguistics — ACL
Names 15 Prof. Kathleen S. Fisher — Fisher, K.

Phones 18 John DOE 3 ... [TS]865-000-0000 ... — 865-000-0000
Times 24 3:40 PM — 15:40

Units 10 12.20 dg — 1220.0 mg

10 Jaimovitch-Lépez et al.

Table 4. Results obtained by the different versions of GPT-3 models desegregated by learn-
ing strategy (from 1-shot to 4-shot learning), system, domain and data wrangling task.

1-shot 2-shot 3-shot
Curie DaVinci Ada Babbage Curie DaVinci Ada Babbage Curie DaVinci
0.6(0.4 .75 . X .. X X X

0.4

Domain Problem Ada Bal
addPunctuation-
addP i

B
BroooRDT

Format-

changePunctuation-
changePunctuation-

o

gotDay-
getDay-

getDayOrdinal-

dates getDayOrdinal-
getMonthName-
getMonthName-

get WeekDay-

et WockDay-
reduce§lonthName-

setFormat-1 0. I

setFormat-2 0. I
generate-1 1.00 100

generate-2 0. I

generate-3

getAfterAt-:

. getAfterAt-;

emails getAfterAt-4 0. !

getDomain-1 0. 4

et Domain-2

someBeforeAt-NA 0.4

afferSymbol-

after I

betweenSymbols-

betweenSymbols-

ckets-

b

COOOOHHOO000OHHO0000

oo R RO RO ROONRDDED
2SS C28888
SiSSio

COOOHHOOOOHOOHHOOO0D
COOOOHHOO000OHHOOC

1

deletePunctuation-
eleteP

deletePunctuation-
deletePunctuation-4
deleteSpaces-2
digit ToEnd-1
£ firstCharacter-1
reetext firstCharacter-2
get AfterComma-1
getAfterComma 2

get

Soooooor PR oo

=S
COOOOHHHHIHO O

ctweenCommas-1
getCaps-1
getCaps-2
getCaps-3
toUpper-1

OO NO R R EDROXO R DN ENDDRRDD!

o
o

it]e-
addTitle-2
get Title-1
getTitle-2
ogin-1
ogin-2

j

names T

countryPrefix-
countryPrefix-
deleteParentheses-
deleteParentheses-
getNumber-

,
8
5
3

B0 DRANDDDRDE

0002822200 0252¢

setPrefix-1

phones SetPrefix-2

setPrefix-3

setPrefix-4

setPrefix-;

setPrefix-i

setPunctuation-

setPunctuation-2 0.

Tme-T 0.20

Time-2 0.00

appendTime-1 0.40

appendTime-2 0.80

appendTime-3 0.80

appendTime-4 0.80

convert-1 0.40

convert-10 0.00

convert-2 0.20

convert-3 0.20

convert-4 0.20

convert-5 0.20

convert-6 0.00

" convert-7 0.20

times convert-8 0.00

convert-9 0.20

deleteTime-1 0.00

deleteTime-2 0.20

getHour-1 0:20

ﬁt]{our- .00

getMinutes-1 0.20
getMinutes-2 0.20
getTime-1 0.20
et Time-2 1.00

EE—— v 2y
convert-2 0.00
convert-3 0.00
csonvcrtf 88

getSystem-1 0.

getSystem-2 0.00
getUnits-1 0.00
getUnits-2 0.00
getValue-1 0.20
etValue-2 0.00

HOOOOOHORHHOOOHHO00000000OHEHOOOC
HOO00OHORHHOOOHOO00000HO0OHO000000000000HHOOO!

S

oD oE0000500050002282220222255¢

S35

oo
=
S
oo
=]
S

4

units

L0000 O00000000000000000000000000HO000HHHHOOOHO00OHHOOOHOOC00000ORHOOHOOO000OHHOOOHHHHOD0

coraooooodooavivibooooomonoD D
SS 888555555508 555S5SS55855555
=
S
=
S

o OO oo XN NN SO ONONOON XXX E DD B NN ND XD D

ooomoooﬁooooow

setFormat- Ada

1%
setFormat-2 #
getDayOrdinal-1 #
changeFormat-2 #
changeFormat-3 #
getDayOrdinal-2 #
getDay-1 #
reduceMonthName-2 #~———=—+
changeFormat-4 #

Can language models automate data wrangling?

Babbage

LR S22 83

changeFormat-1
getMonthName~1 #————=——=
addPunctuation-2

reduceMonthName—-1 ====r==———=u

-

Curie

DaVinci

salep

getDay-2

etWeekDay-2
addPunctuation-1

—u

——

getDay-3

getWeekDay—-1

changePunctuation—-1

getMonthName-2

changePunctuation—-2

someBeforeAt-NA =—————=a
getAfterAt-2 —t

dddddadds

ddddad i

generate-3

getAfterAt-3

getDomain-1

generate—2

getDomain-2

getAfterAt-4

generate-1

deleteSpaces-2 #
deletePunctuation-1 #
deletePunctuation—4 +—————=
deletePunctuation—2 #-
toUpper-1 #
toUpper-2 #
deletePunctuation—3 #
firstCharacter-2 =+
firstCharacter—1 4=——————————=

getCaps—3 +——=

e

UL L

1X@1901)

brackets—2

betweenSymbols-2

getAfterComma-1

brackets—1

afterSymbol-2

getBetweenCommas-1

afterSymbol-1

digitToEnd-1

1J111|11|

getAfterComma-2

HHNLY |

betweenSymbols-1
login-2 #
login—1 #

addTitle-2 m——————t
getTitle-1 #
reduceName-8 #

- .

*

reduceName-6

14

reduceName-5
reduceName—9 +—————=a

saweu

addTitle-1 =

getTitle—2 w=——

reduceName-1

##4 A

reduceName-2
reduceName-3 ==——""—a

countryPrefix-7 #
setPrefix-1 #
setPrefix-5 #
countryPrefix-3 #
countryPrefix-2 #
setPunctuation-1 #
etNumber—2 ——
setPunctuation-2 &~————=—+
countryPrefix-1 #
countryPrefix—9 s

#EEHS £

HJJM A4

countryPrefix-8

sauoyd

deleteParentheses—-1

getNumber-1

setPrefix-6

deleteParentheses—2

setPrefix-2

setPreIix—Al

LR R e

I 1

setPrefix-3

convert-8 #
convert-10 #
addTime-1 #
convert-6 #
convert-4 s———————t
convert-3 +————-—=u
convert-7 4=—————"=u
getHour-1 #
convert-9 +————u
convert-1
convert-5 H=————a
deleteTime-2 4+———=
addTime-2 ==
getMinutes—2 #

|
sawin

convert-2
deleteTime-1 ——t
appendTime-1 =——————"—+—u
getMinutes—1 m————
appendTime—3 =

getHour-2

getTime-1

appendTime-4

appendTime-2

getTime-2

convert—4 #
convert-3 #
getSystem-1 #
convert-1 #
getSystem-2 #
convert-2 #
getValue-1 ===

i

iy

syun

getValue-2 —

getUnits—1

getUnits—2

0 0.25 0.5

0.75

- oA

RS S

0 0.25 0.5 0.75

Accuracy
2-shot Ml 3-shot [l 4-shot

Learning Strategy 1-shot

0

0.25

0.5

0.75

[

Fig. 4. Results obtained by the different versions of GPT-3 models disaggregated by learning
strategy (from 1-shot to 4-shot learning), system, domain and data wrangling task. Tasks
per domain sorted by average performance.

12 Jaimovitch-Lépez et al.

Table 5. Wrong answers provided by the GPT-3 DaVinci system in the 4-shot setting

(examples based on large sentences are represented in Table 6).

Input 1 Input 2 Input 3 Output Correct output Problem Domain
1990.18.01 - - 01.18.1990 01/18/1990 changeFormat-1 dates
28-10-2001 - - 10/28/2001 08/23/2010 changeFormat-2 dates
99/09/03 - - 09/99/03 09/03/99 changeFormat-3 dates
06-04-2001 - - 04/06/2001 06/04,/2001 changeFormat-3 dates
08-07-2017 - - 07-08-2017 08-07-2017 changeFormat-4 dates
31/05/17 - - 17 31 getDay-1 dates
25-08-85 - - 08 25 getDay-1 dates
31/03/75 - - 31st 31th getDayOrdinal-1 dates
09/11/53 - - 11th 09th getDayOrdinal-1 dates
05/09/2008 - - 5th 05th getDayOrdinal-2 dates
Thursday, October 31, 1985 - - October Thursday getMonthName-1 dates
11/06/2016 - - Jun Nov reduceMonthName-2 dates
8072017 - - 07-08-2008 08-07-2017 setFormat-1 dates
2261993 - - 93-22-1993 26-02-1993 setFormat-1 dates
8222000 - - 22/02/2000 12/08,/2000 setFormat-2 dates
11202001 - - 20/12/2001 10/11/2001 setFormat-2 dates
casper canall3 - casper@canall3.cl casper@canall3.com generate-3 emails
caedgigo@garmendia.cl - - gmail.com garmendia.cl getAfter At-2 emails
1-845-456-7891 - - 18454567819 18454567891 deletePunctuation-1 freetext
1-845-333-7891 - - 18453337890 18453337891 deletePunctuation-1 freetext
1-7891 - - 7891 17891 deletePunctuation-2 freetext
1-7892 - - 7892 17892 deletePunctuation-2 freetext
Aliquam - - a A firstCharacter-2 freetext
Computer and Communications Security - - ACSAC CCS getCaps-2 freetext
Jones - Mr. Jones Sr. Jones addTitle-2 names
Dario Gag-Dorado - - dari daga login-1 names
Paco Gabot Narale - - paco pagana login-1 names
Daman Hivser-Kleiner - - dakle dahi login-2 names
Giussepe Hindravtoks - - giussepe gihi login-2 names
Agustino Zimmann - Agustino, A. Agustino, Z. reduceName-5 names
618-4390 PAN - (7) 618-4390 (507) 618-4390 countryPrefix-3 phones
36-678-59-10 AUT - (9) 36-678-59-10 (43) 36-678-59-10 countryPrefix-7 phones
846-2730 AND - (846) 2730 (376) 846-2730 countryPrefix-7 phones
425-846-2730 425-425 425 - - 425-425 425 425-846-2730 getNumber-2 phones
618 4390 425 - 425-618-4390 725-618-4390 setPrefix-1 phones
743-1650 425 - 425-743-1650 892-743-1650 setPrefix-1 phones
618-4390 425 - (4+425) 618-4390 (+725) 618-4390 setPrefix-5 phones
743-1650 425 - (+425) 743-1650 (+892) 743-1650 setPrefix-5 phones
08 5 - 12 13 addTime-1 times
16:15:12 5 - 05:15:12 21:15:12 addTime-1 times
21:20 5 - 26:20 02:20 addTime-2 times
16:15:12 - - 16:15:12:00 16:15:12 appendTime-1 times
16:15:12 30 - 16:15:12:30 16:15:12 appendTime-3 times
06:15:12 - - 06:15:12 16:15:12 convert-1 times
08:40 EST PST 20:40:00 05:40:00 convert-10 times
06:15 CET MST 00:15:00 22:15:00 convert-10 times
14:10 12h - 14:10 02:10 PM convert-3 times
21:20 12h - 21:20 09:20 PM convert-3 times
08:40 UTC 24h - 20:40 08:40 convert-4 times
06:15:12 24h - 06:15:12 16:15:12 convert-4 times
14:10 - - 14:10 AM 02:10 PM convert-5 times
21:20 - - 21:20 AM 09:20 PM convert-5 times
08:40 UTC - - 03:40 PM 08:40 AM convert-6 times
14:10 CET uTC 14:10 13:10 convert-7 times
21:20 EST uTC 03:20 02:20 convert-7 times
08:40 EST PST 20:40 05:40 convert-8 times
06:15:12 CET MST 18:15:12 22:15:12 convert-8 times
14:10 CET UTC 14:10:00 13:10:00 convert-9 times
21:20 EST UTC 07:20:00 02:20:00 convert-9 times
08 - - 08 - deleteTime-1 times
12.20dg mg - 12.200001 1220 convert-1 units
1854 dam dm - 18.540000 185400 convert-1 units
92.26 K cK - 92.26 9226 convert-2 units
12.2 dg mg 12.200001 1220 convert-3 units
1854 dam dm 18.540000 185400 convert-3 units
92.26 K cK 92.26 9226 convert-4 units
81 hm cm 0.081 8100 convert-4 units
1854 dam - - Area Length getSystem-1 units
12.20dg - - 12.20 12.2 getValue-1 units

Can language models automate data wrangling? 13

Table 6. Wrong answers provided by the GPT-3 DaVinci system in the 4-shot setting for
examples based in large sentences.

problem domain
Input Etiam dapibus tortor sed cursus blandit.
Output Etiamdapibustortorsedcursussed deletePunctuation-3 freetext
Correct output|Etiamdapibustortorsedcursusblandit
Input Quisque mattis dolor ac metus fermentum consectetur.
Output Quismattisdoloracmetusfermentumconsectetur deletePunctuation-3 freetext
Correct output|Quisquemattisdoloracmetusfermentumconsectetur
Input Integer malesuada elit et hendrerit fermentum.
Output Integermalesuadaelithendreritfermentum deletePunctuation-4 freetext
Correct output|Integermalesuadaelitethendreritfermentum
Input Pellentesque tempor justo a dui varius maximus.
Output Pellentesque temporjustoaduivariusmaximus deletePunctuation-4 freetext
Correct output|Pellentesquetemporjustoaduivariusmaximus
Input Mauris fringilla neque nec libero consequat quis facilisis nisi tristique
Output Maurisfringillanequeconsequatlibero deleteSpaces-2 freetext
Correct output|Maurisfringillanequenecliberoconsequatquisfacilisisnisitristique
Input Nam cursus purus nec mi maximus fermentum
Output Namcursuspurusnecminimaximusfermentum deleteSpaces-2 freetext
Correct output|Namcursuspurusnecmimaximusfermentum
Input Quisque mattis dolor ac metus fermentum consectetur.
Output QUISQUE MATTIS DOLOR AC METUS FERMENTUM CONSEQUETUR toUpper-1 freetext
Correct output|QUISQUE MATTIS DOLOR AC METUS FERMENTUM CONSECTETUR

